Российская Федерация
Повышенная надежность оптических измерений благодаря использованию апертурных кантилеверов вместо оптоволокна.
Сканирующая ближнепольная оптическая микроскопия (SNOM) позволяет изучать оптические свойства образца с разрешением, значительно превышающим дифракционный предел. Флуоресценцию образца, отражение, пропускание, рассеяние и т. д. SNOM позволяет получать оптическое изображение объекта с разрешением до нескольких десятков нанометров. Существуют два основных вида микроскопии ближнего поля: (1) апертурный SNOM и (2) безапертурный SNOM.
В первом случае в качестве оптического зонда используется апертура субволнового размера на сканирующем наконечнике. Это может быть отверстие в металлическом покрытии либо наконечника оптического волокна, либо кантилевера. Пространственное разрешение
в апертурном SNOM, как правило, определяется диаметром апертуры. Безапертурные методы также основаны на оптических свойствах ближнего поля, но не требуют пропускания света через апертуру. К безапертурным методоам относят SNOM так называемый scattering SNOM, усиленное Рамановское излучение/флуоресценция (TERS) и другие. Методы SNOM широко используются в нанофотонике (плазмоника, фотонные кристаллы, волноводы и т. д.), лазерных технологиях, оптических микроустройствах и материаловедении.
Распространение поверхностных плазмон-поляритонов (SPP) в волноводе SPP исследовано с использованием SNOM, оснащенного гетеродинным интерферометром. Измерены как интенсивность, так и распределение фаз электромагнитного поля СПП.
(а) Топография волновода. (б) Амплитуда электромагнитного поля, полученная зондом SNOM. (в) Фаза электромагнитного поля. Используется лазер с возбуждением 785 нм.
Данные: Antonello Nesci and Olivier J.F. Martin
(а) Экспериментальная установка. (б) СЭМ-изображение и (в) shear-force топография фазовой пластины. Фазовая пластина имеет восемь зон с глубиной травления около 300 нм. (d), (e) Расчетное распределение напряженности электрического поля падающего и проходящего света в плоскостях XZ и XY. (f), (g) Экспериментальное распределение интенсивности электрического поля (детектируемого SNOM) после прохождения через фазовую пластину в плоскостях, расположенных на высоте 10 нм и 750 нм от поверхности пластины. Данные из: R.G. Mote, S.F. Yu, A. Kumar, W. Zhou, X.F. Li, APPLIED PHYSICS B 102: 95–100 (2011).
Изучается фокусирование с помощью плазмонного устройства на основе пленки золота с помощью NTEGRA SNOM. Экспериментальные данные показывают значительную корреляцию с моделированием.
(а) СЭМ-изображение устройства. (б) Распределение напряженности электрического поля проходящего света через плазмонное устройство (смоделировано). Прошедшее излучение регистрируется с помощью NTEGRA SNOM. Распределение интенсивности проходящего света в горизонтальных плоскостях с расстояниями (c) z = 0,5 мкм, (d) z = 1,6 мкм, (e) z = 2,5 мкм и (f) z = 3,5 мкм от поверхности устройства; (g) Распределение интенсивности вдоль сечения в (d). Данные Dr. Fenghuan Hao, Dr. Rui Wang and Dr. Jia Wang , OPTICS EXPRESS Vol. 18, No. 3, 15741- 15746 (2010).
Апертурный СБОМ в режиме «сбора» используется для определения топографии и распределения поля на поверхности фотонного кристалла. Распространение света в однолинейном фотонном кристалле (PhC), из ниобата лития толщиной 450 нм. Топография SNOM (a) и оптические изображения ближнего поля (b), записанные над поверхностью PhC. Волновые векторы Блоха могут быть получены из ближнепольных оптических изображений. Данные: R. Geiss, S. Diziain, N. Janunts, APPLIED PHYSICS LETTERS 97, 131109 (2010).
Фотонный кристалл получают путем травления сотовой решетки в пластине InP с использованием электронно-лучевой литографии и ионного травления. Оптическая микроскопия ближнего поля используется для визуализации эванесцентной моды с пространственным разрешением ниже дифракционного предела.
(а) Топография hsear-force режим (2 × 2 мкм). (б) Оптическое изображение ближнего поля при 1611 нм (2 × 2 мкм), кружки указывают положения сот 2D-фотонного кристалла. Наблюдаются монополярные моды в каждой элементарной ячейке, имеющие внутренний и внешний радиусы 70 нм и 310 нм соответственно. (c) Модуляция напряженности электрического поля на поверхности фотонного кристалла (2 × 2 мкм).
Данные от: Thanh-Phong Vo, Adel Rahmani, Ali Belarouci, Christian Seassal, Dusan Nedeljkovic and Ségolène Callard, OPTICS EXPRESS Vol. 18, No. 3, 15741- 15746 (2010).
Кантилеверные SNOM зонды более воспроизводимы, надежны и имеют длительный срок службы;
Пропускная способность зонда SNOM выше, чем у волоконного зонда SNOM (для того же размера апертуры).
Лазерный АСМ дефлектор позволяет использовать все виды обратной связи: контактный, полуконтактный, бесконтактный;
Автоматическое выравнивание (лазер-апертура);
Режимы SNOM: сбор, передача.
SPECTRA – это уникальная интеграция атомно-силового микроскопа с конфокальной […]
Запрос цены ПодробнееСистема DVIA-T является высокоэффективной платформой для подавления вибраций в […]
Запрос цены ПодробнееSNOM зонды для Ближнепольной Сканирующей Микроскопии. Доступны для заказа […]
Запрос цены Подробнее